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Abstract

For a structure partially covering the free liquid surface of a two-dimensional rectangular container of infinite width,

length l and a filling grade of height h hydroelastic vibrations have been treated for a frictionless liquid. It was found

that with a partial covering of the free surface the lower coupled frequencies increase with structural area, yielding in

addition a calmed down motion of the liquid. It also was found that the coupled frequencies stay always below those of

the case of the rigid surface covering.

r 2003 Published by Elsevier Ltd.

1. Introduction

With the increasing size of airplanes and their larger amount of propellants and larger propellant container

dimensions, the effect of propellant sloshing upon the performance, control and stability of such vehicles is becoming

more pronounced and may even be dangerous for the projected missions. These sloshing effects have led to difficulties

and peculiar performance behaviors. One of the main problems appearing in such a case is the closeness of the control

or autopilot frequency to the fundamental propellant frequency. Besides the maneuvering of the vehicle and wind gust

inputs, a continuous excitation of the propellant oscillations is present. This is especially of importance for low aspect

ratio containers, in which nearly all the liquid participates in the sloshing motion. Similar problems appear also in liquid

cargo ships, road tankers and possibly space stations. This lead to the noncontrollability and even destruction of the

total vehicle. Another application would be the interaction of a floating pier or an ice plate, reaching partially into

the liquid.

The problem of liquid oscillations in rectangular containers has been treated previously and may be found in Lorell

(1951), Graham and Rodriguez (1952), Bauer (1966a,b) and Bauer and Villanueva (1967). It was found that the

subdivision of the container by vertical walls increases the natural frequencies and decreases the magnitude of the

sloshing masses participating in the oscillation (Bauer and Villanueva, 1967). The disadvantage of this method,

however, is the required additional weight and as a consequence of this a reduction of the payload. In addition, such a

subdivision would yield two natural frequencies which usually would be lower than that of the case of a surface cover

and would also exhibit larger slosh masses participating in the liquid motion. Both effects are of disadvantage to the

system, leading us to prefer the method of a free liquid surface cover by a structural element. To avoid this penalty the

method of covering the free liquid surface with structural elements has been investigated by Bauer and Eidel (2000) and

it could be found that not only the natural frequencies of the liquid could be increased, but that the motion of the liquid
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in the container could be calmed down considerably thus creating a larger reduction of liquid forces and moments upon

the vehicle. This is especially important for low aspect ratio containers which exhibit violent liquid motions and large

sloshing masses. To save as much structural weight as possible with these free liquid surface obstructions the

obstructing structural element is chosen to be thin and exhibits therefore flexibility. For such a system, we investigate in

the following the coupled natural frequencies and the coupled response of the liquid. For this reason we cover the free

liquid surface partially with an elastic plate (beam), which motion influences the motion of the liquid in a desirable way.

This interaction of structure and liquid will depend on the property of the liquid and the elastic property of the

structure.

Since we are interested mainly in the lower coupled liquid frequency, we shall numerically evaluate results only in the

lower frequency range. To widen the scope of our investigation we have included surface tension to cover with the

following analysis also cases where the gravity constant exhibits decreased values, i.e., cases for which the Bond number

Bo approaches zero. In such cases the liquid surface tension will play the dominant role for the motion of the liquid. It is

common knowledge that the natural frequency of a liquid in a container increase with the decrease of the free surface

area. In Bauer and Eidel (2000) the magnitude of such a change was found for a partial obstruction of the free liquid

surface by a rigid structure. The following investigation presents the magnitude of the lower coupled frequency if the

partial obstruction is for reasons of weight savings considered elastic and exhibits various lengths.

The method used here has been employed successfully for various mechanical systems, such as the sloshing of a

viscous liquid in a circular cylindrical container (Bauer and Eidel, 1999), the thermocapillary (Bauer and Eidel, 2002) or

oscillatory behavior (Bauer and Chiba, 2003) of spherical captured liquid drops, where useful results could be obtained

with reasonable numerical efforts.

2. Basic equations

A rectangular container of infinite width and length l is filled with an incompressible and frictionless liquid to a height

h: Its free surface is partly covered by an elastic plate. The container walls x ¼ 0 and l and the bottom of the container

at z ¼ �h are considered as solid walls. A part of the liquid surface at z ¼ 0 (Fig. 1) is covered by an elastic plate which

may have various attachments to the walls x ¼ 0 and/or x ¼ l: These may either be clamped, simply supported or

guided, while the other end of the elastic plate (beam) is treated as a free boundary. In the present treatment we shall
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Nomenclature

Bo Bond number ðBo ¼ RLgl2=sÞ
d thickness of the beam

E Young’s modulus of elasticity

g gravity constant ðg� ¼ gl3m=EIÞ
h liquid height

I area moment of inertia (EI stiffness of beam)

l width of rectangular container

t time

x; y; z Cartesian coordinates

x0 excitation amplitude

a coverage ratio (al length of surface coverage (beam))

b�4 ¼ ðo2m� RLgÞl4=EI ¼ o�2 � g�=m�

zðx; tÞ free surface displacement
%zðx; tÞ beam deflection

y0 pitching amplitude

RC density of beam

RL liquid density

m mass per unit length of beam ðm� ¼ m=RCl; m ¼ RCdÞ
s liquid surface tension ðs� ¼ sl2=EI ; %s ¼ s=RLl3Þ
F velocity potential

o natural frequency o� ¼ ol2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p� �
O forced frequency
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restrict ourselves to an elastic cover, being clamped at the sidewall x ¼ 0: Assuming the liquid to be in irrotational

motion ðcurl~vv ¼ 0Þ; the velocity distribution may be represented as a gradient of a velocity potential Fðx; z; tÞ; i.e.,
~vv ¼ gradF: The continuity equation div~vv ¼ 0 yields then the Laplace equation

DF ¼ 0; ð1Þ

which has to be solved with the rigid wall conditions

@F
@x

¼ 0 at the sidewalls x ¼ 0 and x ¼ l ð2Þ

and

@F
@z

¼ 0 at the container bottom z ¼ �h: ð3Þ

The free liquid surface at z ¼ 0 is obtained from the kinematic condition @z=@t ¼ @F=@z and the dynamic condition

@F=@t þ gz� ðs=RLÞð@
2z=@x2Þ ¼ 0; yielding in its combined form the expression

@2F
@t2

þ g
@F
@z

�
s
RL

@3F
@x2@z

¼ 0 at z ¼ 0 in the range aloxpl; ð0pao1Þ ð4Þ

and is valid in the range of the free liquid surface. In this equation RL is the density of the liquid, s its surface tension, g

is the gravity constant, while zðx; tÞ is the free surface elevation. The motion of the elastic beam at the surface z ¼ 0 is

given by the beam equation

EI
@4 %z
@x4

þ m
@2 %z
@t2

¼ �RL

@F
@t

� RLg%z at z ¼ 0 ð5Þ

and the compatibility condition

@%z
@t

¼
@F
@z

at z ¼ 0 in the range 0pxpal: ð6Þ

In Eq. (5) EI is the stiffness of the beam, m its mass/unit length and %zðx; tÞ is the deflection of the beam. If there is more

than one beam, say another at x ¼ l we have to observe additional elastic equations (5), (6). The boundary conditions

for the beam are given by

%z ¼
@%z
@x

¼ 0 ðclampedÞ at x ¼ 0 ð7Þ

and

@2 %z
@x2

¼
@3 %z
@x3

¼ 0 ðfree endÞ at x ¼ al: ð8Þ
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Fig. 1. Geometry and coordinate system.
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ðao1Þ for the clamped–free beam,

%z ¼
@2 %z
@x2

at x ¼ 0 and
@2 %z
@x2

¼
@3 %z
@x3

¼ 0 at x ¼ al ð9Þ

for the simply supported—free beam, and

@%z
@x

¼
@3 %z
@x3

¼ 0 at x ¼ 0 and
@2 %z
@x2

¼
@3 %z
@x3

¼ 0 at x ¼ al ð10Þ

for the guided-free beam. If the attachment to the container wall is elastically supported, the boundary conditions

would read there

EI
@2 %z
@x2

¼ k
@%z
@x

; EI
@3 %z
@x3

¼ �K %z at x ¼ 0; ð11Þ

where the edge rotation is opposed by the torsional spring having the distributed stiffness k (moment/unit length) and

where translation of %z is opposed by springs exhibiting a distributed stiffness K (force/unit length). Eqs. (1)–(8) (or the

appropriate other boundary conditions for the beam) represent the hydroelastic problem with a one-sided elastic partial

cover of the liquid surface.

In addition we have to observe the preservation of the liquid volume, i.e. for the clamped–free caseZ %z

z¼�h

Z al

x¼0

dx dz þ
Z z

z¼�h

Z l

x¼al

dx dz ¼ hl; ð12Þ

which yieldsZ al

x¼0

%z dx þ
Z l

x¼al

z dx ¼ 0: ð13Þ

3. Method of solution

The solution of the Laplace equation (1) together with the solid wall conditions at the sidewalls (2) and container

bottom (3) yields for the velocity potential the expression

Fðx; z; tÞ ¼ F0 þ
XN
n¼1

An cosh
np
l
ðz þ hÞ

h i
cos

npx

l

	 
( )
eiot; ð14Þ

while the solution of the beam equation (5) is with the deflection %zðx; tÞ ¼ eiot %zðxÞ given by

%zðxÞ ¼A0 cos b
x

l

	 

þ B0 sin b

x

l

	 

þ C0 cosh b

x

l

	 

þ D0 sinh b

x

l

	 

þ
ioRLl4

EIb4
F0

�
ioRLl4

EI

XN
n¼1

An
coshðnph=lÞ

n4p4 � b4
cos

npx

l

	 

; ð15Þ

where

b4 ¼
ðo2m� RLgÞl4

EI
> 0: ð16Þ

Depending whether the coupled frequency o is large or small, i.e. b4 > 0 or o0 the beam Eq. (5) requires two different

approaches. It may be mentioned that for a ¼ 0; i.e. a completely free liquid surface, the natural frequencies of the

unobstructed rectangular container (Lorell, 1951) would be obtained, while for a ¼ 1 the liquid surface would be

completely covered with an elastic plate. If the liquid density RL vanishes, Eq. (5) represents just the beam equation with

b4- %b4 ¼ mo2=EI and exhibits solution (15) with RL ¼ 0:

3.1. The case b4 > 0

We shall treat here the case of a one-sided elastic cover reaching from x ¼ 0 to al ðao1Þ and being clamped–free, i.e.

exhibiting the boundary conditions (7) and (8). They yield with Eq. (15)

A0 þ C0 þ
o�

m�b4
F�0 �

o�

m�
XN
n¼1

A�
n

coshðnph=lÞ

n4p4 � b4
¼ 0; ð17Þ
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B0 þ D0 ¼ 0; ð18Þ

A0 cosðabÞ þ B0 sinðabÞ � C0 coshðabÞ � D0 sinhðabÞ �
o�p2

m�b2
XN
n¼1

n2A�
n

coshðnph=lÞ

n4p4 � b4
cosðnpaÞ ¼ 0 ð19Þ

and

A0 sinðabÞ � B0 cosðabÞ þ C0 sinhðabÞ þ D0 coshðabÞ �
o�p3

m�b3
XN
n¼1

n3A�
n

coshðnph=lÞ

n4p4 � b4
sinðnpaÞ ¼ 0; ð20Þ

where

o� ¼ ol2
ffiffiffiffiffiffi
m

EI

r
; m� ¼

m
RLl

; g� ¼
gl3m
EI

; F�0 ¼ il

ffiffiffiffiffiffi
m

EI

r
F0

and

A�
n ¼ ilAn

ffiffiffiffiffiffi
m

EI

r
; b4 ¼ o�2 �

g�

m�
:

From Eqs. (17)–(20) the constants A0; B0; C0 and D0 may be determined. They depend on F�0 and A�
n : From the

condition of constant liquid volume (13) follows the equation

A0 sinðabÞ � B0½cosðabÞ � 1� þ C0 sinhðabÞ þ D0½coshðabÞ � 1� þ
abo�

m�b4
F�0

�
o�b
m�

XN
n¼1

%A�
n

sinðnpaÞ

npðn4p4 � b4Þ
þ

b
o�
XN
n¼1

%A�
n tanh

nph

l

� �
sinðnpaÞ ¼ 0 ð21Þ

from which together with the results of Eqs. (17)–(20) F�0 may be obtained. The remaining Eq. (4) for the free surface

condition and (6) for the compatibility condition have to be satisfied at z ¼ 0 in their respective range in x: If there is as
treated here, one elastic member of length al clamped-in at the solid wall x ¼ 0 the range of the elastic plate (beam) is

0px=lpa; and that of the free liquid surface is given by aox=lp1: The deflection of the beam is with the above

notations presented by

%zðxÞ ¼A0 cos b
x

l

	 

þ B0 sin b

x

l

	 

þ C0 cosh b

x

l

	 

þ D0 sinh b

x

l

	 

þ

o�

m�b4
F�0

�
o�

m�
XN
n¼1

A�
n

coshðnph=lÞ

n4p4 � b4
cos

npx

l

	 

; ð22Þ

while the velocity potential is

Fðx; z; tÞ ¼
�i

l
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p F�0 þ
XN
n¼1

A�
n cosh

np
l
ðz þ hÞ

h i
cos

npx

l

	 
( )
eiot: ð23Þ

The compatibility condition (6) is with %A�
n ¼ A�

n coshðnph=lÞ given by

A0 cos b
x

l

	 

þ B0 sin b

x

l

	 

þ C0 cosh b

x

l

	 


þ D0 sinh b
x

l

	 

þ

o�

m�b4
F�0 �

o�

m�
XN
n¼1

%A�
n

1

n4p4 � b4
cos

npx

l

	 


þ
p
o�
XN
n¼1

n %A�
n tanh

nph

l

� �
cos

npx

l

	 

¼ 0 ð24Þ

and is valid in the range 0px=lpa; while the free surface condition (4) yields with the surface tension parameter

s� ¼ sl2=ðEIÞ the expression

o�2F�0 �
XN
n¼1

%A�
n npðg� þ s�m�n2p2Þtanh

nph

l

� �
� o�2

� �
cos

npx

l

	 

¼ 0 ð25Þ

in the range aox=lp1: It may be mentioned that in both equations A0; B0; C0; D0 and F�0 are given functions of %A�
n :

Since Eq. (24) and (25) cannot be satisfied exactly by analytical means, we choose to satisfy them at certain freely chosen

points x: Satisfying the compatibility condition (24) at N1 points x=l in the range 0px=lpa and the free surface

condition (25) at N2 points in the range apx=lp1; we obtain N1 þ N2 equations in %A�
n ; n ¼ 1; 2;y; ðN1 þ N2Þ: These

algebraic equations are obtained by introducing in Eq. (24) x=l ¼ an1=N1 for n1 ¼ 1; 2;y;N1; yielding N1 algebraic

equations, and in Eq. (25) x=l ¼ ½aþ ð1� aÞn2=ðN2 þ 1Þ� for n2 ¼ 1; 2;y;N2; resulting in N2 algebraic equations. The

vanishing coefficient determinant of this homogeneous algebraic system is the natural frequency equation for the
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determination of the lower coupled natural frequencies o� ¼ ol2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
: The above infinite series are now finite sums

running from n ¼ 1 to ðN1 þ N2Þ:

3.2. The case b4o0

Small coupled frequencies o; i.e., the case b4o0 or b4 ¼ �b�4; b�4 ¼ ðRLg � o2mÞl4=EI ¼ g�=m� � o�2; g�=m� >
o�2; requires a different solution of the beam equation. The beam equation is therefore given by the expression

%zIVðxÞ þ b�4 %zðxÞ ¼ �RLo
l3ffiffiffiffiffiffiffiffiffi
mEI

p F�0 þ
XN
n¼1

%A�
n cosðnpxÞ

( )
; ð26Þ

where

x ¼
x

l
; %A�

n ¼ A�
n cosh

nph

l

� �
¼ ilAn

ffiffiffiffiffiffi
m

EI

r
cosh

nph

l

� �
:

Its solution is

%zðxÞ ¼ eðb
�=

ffiffi
2

p
Þ x A�

0 cos
b�ffiffiffi
2

p x

 !
þ B�0 sin

b�ffiffiffi
2

p x

 !" #
þ e�ðb�=

ffiffi
2

p
Þx C�

0 cos
b�ffiffiffi
2

p x

 !
þ D�

0 sin
b�ffiffiffi
2

p x

 !" #

�
o�

m�b�4
F�0 �

o�

m�
XN
n¼1

%A�
n

n4p4 þ b�4
cosðnpxÞ: ð27Þ

In the case of the clamped–free beam the following relations are with the boundary conditions of the beam, i.e. the

Eqs. (7) and (8) given by

A�
0 þ C�

0 �
o�

m�b�4
F�0 �

o�

m�
XN
n¼1

%A�
n

n4p4 þ b�4
¼ 0; ð28Þ

A�
0 þ B�0 � C�

0 þ D�
0 ¼ 0; ð29Þ

eab
�=

ffiffi
2

p
B�0 cos

ab�ffiffiffi
2

p
 !

� A�
0 sin

ab�ffiffiffi
2

p
 !" #

þ e�ab�=
ffiffi
2

p
C�

0 sin
ab�ffiffiffi

2
p

 !
� D�

0 cos
ab�ffiffiffi

2
p

 !" #

¼ �
o�p2

m�b�2
XN
n¼1

n2 %A�
n cosðnpaÞ

n4p4 þ b�4
; ð30Þ

eab
�=

ffiffi
2

p
B�0 cos

ab�ffiffiffi
2

p
 !

� sin
ab�ffiffiffi

2
p

 !" #
� A�

0 sin
ab�ffiffiffi

2
p

 !
þ cos

ab�ffiffiffi
2

p
 !" #( )

� e�ab�=
ffiffi
2

p
C�

0 sin
ab�ffiffiffi

2
p

 !
� cos

ab�ffiffiffi
2

p
 !" #(

�D�
0 cos

ab�ffiffiffi
2

p
 !

þ sin
ab�ffiffiffi

2
p

 !" #)
¼

o�p3
ffiffiffi
2

p
m�b�3

XN
n¼1

n3 %A�
n sinðnpaÞ

n4p4 þ b�4
; ð31Þ

while from the condition of constant liquid volume we obtain

eab
�=

ffiffi
2

p
A�

0 cos
ab�ffiffiffi

2
p

 !
þ sin

ab�ffiffiffi
2

p
 !" #

þ B�0 sin
ab�ffiffiffi

2
p

 !
� cos

ab�ffiffiffi
2

p
 !" #( )

� e�ab�=
ffiffi
2

p
C�

0 cos
ab�ffiffiffi

2
p

 !
� sin

ab�ffiffiffi
2

p
 !" #

þ D�
0 sin

ab�ffiffiffi
2

p
 !

þ cos
ab�ffiffiffi

2
p

 !" #( )

� A0 þ B0 þ C0 þ D0 �

ffiffiffi
2

p
ao�

m�b�3
F�0 �

ffiffiffi
2

p
o�b�

m�
XN
n¼1

%A�
n

sinðnpaÞ

npðn4p4 þ b�4Þ

þ

ffiffiffi
2

p
b�

o�
XN
n¼1

%A�
n tanh

nph

l

� �
sinðnpaÞ ¼ 0: ð32Þ
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The integration constants A�
0 ; B�0 ; C�

0 ; D�
0 and F�0 may be obtained as functions of the constants %A�

n from the

inhomogeneous algebraic equations (28)–(31) and (32). Conditions (6) and (4), i.e., the compatibility condition and the

free surface condition are then

eðb
�=

ffiffi
2

p
Þ x A�

0 cos
b�ffiffiffi
2

p x

 !
þ B�0 sin

b�ffiffiffi
2

p x

 !" #
þ e�ðb�=

ffiffi
2

p
Þx C�

0 cos
b�ffiffiffi
2

p x

 !
þ D�

0 sin
b�ffiffiffi
2

p x

 !" #

�
o�

m�b�4
F�0 �

o�

m�
XN
n¼1

%A�
n

n4p4 þ b�4
cosðnpxÞ þ

p
o�
XN
n¼1

n %A�
n tanh

nph

l

� �
cosðnpxÞ ¼ 0 ð33Þ

and

o�2F�0 �
XN
n¼1

%A�
n npg� 1þ

n2p2

Bo

� �
tanh

nph

l

� �
� o�2

� �
cosðnpxÞ ¼ 0: ð34Þ

Satisfying the compatibility condition (33) at N1 points x=l in the range 0px=lpa and the free surface condition (34) at

N2 points in the range apx=lp1; we obtain ðN1 þ N2Þ equations in %A�
n ; n ¼ 1; 2;y; ðN1 þ N2Þ: These homogeneous

algebraic equations are obtained by introducing in Eq. (33) x=l ¼ an1=N1 for n1 ¼ 1; 2;y;N1; yielding N1 algebraic

equations, and in Eq. (34) x=l ¼ ½aþ ð1� aÞn2=ðN2 þ 1Þ� for n2 ¼ 1; 2;y;N2; resulting in N2 algebraic equations. The

vanishing coefficient determinant is the natural frequency equation for the determination of the lower coupled natural

frequencies o� ¼ ol2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
: The above infinite series are now finite sums running from n ¼ 1 to ðN1 þ N2Þ:

4. Forced container excitations

If the container is harmonically excited in x-direction by x0e
iOt; where x0 is the excitation amplitude and O the forcing

frequency, the liquid in the container as well as the elastic partial cover will respond according to the magnitude of the

amplitude x0 and the forcing frequency O: The same is true for rotational (pitching) excitation y0eiOt: In these cases we

have to determine the magnification functions (response functions) of the free surface displacement zðx; tÞ and the plate

displacement %zðx; tÞ:

4.1. Harmonic translation

For harmonic translational excitation in x-direction we have to solve the Laplace equation (1) with the container

bottom condition (3) and the sidewall conditions

@F
@x

¼ iOx0e
iOt at x ¼ 0 and x ¼ l ð35Þ

and the free surface condition (4) together with the plate (beam) Eq. (5) with its boundary conditions (7) and (8) as well

as the compatibility condition (6). Extracting the rigid body motion of the container by the transformation

Fðx; z; tÞ ¼ eiOt½iOx0x þCðx; zÞ� ð36Þ

yields homogeneous wall boundary conditions for C at x ¼ 0; x ¼ l and z ¼ �h and the Laplace equation DC ¼ 0:
The free liquid surface condition (4) renders the expression

g
@C
@z

�
s
RL

@3C
@x2@z

� O2C ¼ iO3x0x at z ¼ 0 in the range aloxpl; ð37Þ

and the compatibility condition

@%z
@t

¼ eiOt @C
@z

at z ¼ 0 in the range 0pxpal: ð38Þ

The plate equation (beam equation) (5) with %zðx; tÞ ¼ eiOt %zðxÞ yields then

EI
d4 %z
dx4

� ðmO2 � RLgÞ%z ¼ �iORLCjz¼0 þ O2RLx0x ð39Þ

and has to be solved with the corresponding boundary conditions. With

Cðx; zÞ ¼ C0 þ
XN
n¼1

An cos
npx

l

	 

cosh

np
l
ðz þ hÞ

h i
ð40Þ
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Eq. (39) yields the solution

%zðxÞ ¼A0 cos %b
x

l

	 

þ B0 sin %b

x

l

	 

þ C0 cosh %b

x

l

	 

þ D0 sinh %b

x

l

	 

þ

O�

m� %b4
C�

0

�
O�

m�
XN
n¼1

%A�
n

1

n4p4 � %b4
cos

npx

l

	 

�

O�2x0

m� %b4l
x; ð41Þ

where %b4 ¼ ðmO2 � RLgÞl4=EI ¼ O�2 � g�=m�; O� ¼ Ol2
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
and C�

0 ¼ il
ffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
C0:

With the boundary condition of the beam we obtain

A0 þ C0 þ
O�

m� %b4
C�

0 �
O�

m�
XN
n¼1

%A�
n

1

n4p4 � %b4
¼ 0; ð42Þ

B0 þ D0 �
O�2x0

m� %b5
¼ 0; ð43Þ

A0 cosða %bÞ þ B0 sinða %bÞ � C0 coshða %bÞ � D0 sinhða %bÞ ¼
O�p2

m� %b2
XN
n¼1

n2 %A�
n

cosðnpaÞ
n4p4 � %b4

; ð44Þ

A0 sinða %bÞ � B0 cosða %bÞ þ C0 sinhða %bÞ þ D0 coshða %bÞ ¼
O�p3

m� %b3
XN
n¼1

n3 %A�
n

sinðnpaÞ
n4p4 � %b4

: ð45Þ

The velocity potential is (with Eq. (40))

Fðx; z; tÞ ¼
ieiOt

l
ffiffiffiffim
EI

p O�
x0

l
x �C�

0 �
XN
n¼1

A�
n cos

npx

l

	 

cosh

np
l
ðz þ hÞ

h i( )
ð46Þ

and the compatibility condition yields

A0 cos %b
x

l

	 

þ B0 sin %b

x

l

	 

þ C0 cosh %b

x

l

	 

þ D0 sinh %b

x

l

	 

þ

O�

m� %b4
C�

0 �
O�

m�
XN
n¼1

%A�
n

1

n4p4 � %b4
cos

npx

l

	 

�

O�2x0

m� %b4l
x

þ
O�2x0

m� %b5
sinh %b

x

l

	 

þ

p
O�
XN
n¼1

n %A�
n tanh

nph

l

� �
cos

npx

l

	 

¼ 0; ð47Þ

which is valid in the range 0px=lpa; while the free surface condition results in the expression

O�2C�
0 �

XN
n¼1

%A�
n np g� þ s�m�n2p2

� �
tanh

nph

l

� �
� O�2

� �
cos

npx

l

	 

¼ O�3x0

x

l
ð48Þ

and is to be applied in the range apx=lp1: The condition of constant liquid volume (13) yields

A0 sinða %bÞ � B0½cosða %bÞ � 1� þ C0 sinhða %bÞ þ D0½coshða %bÞ � 1� þ
aO�

m�b3
C�

0 �
O� %b
m�

XN
n¼1

%A�
n

sinðnpaÞ

npðn4p4 � b4Þ

�
a2O�2x0

2m� %b3
þ

%b
O�
XN
n¼1

%A�
n tanh

nph

l

� �
sinðnpaÞ ¼ 0 ð49Þ

Eqs. (47) and (48) are a set of inhomogeneous algebraic equations, that may be satisfied at freely chosen points x=l

yielding for n ¼ 1; 2;y; ðN1 þ N2Þ the response values A�
n ðO

�Þ:We may notice that we deal with the same Eqs. (24) and

(25), where the right-hand side zeros are replaced by

O�2x0

m� %b4l
x �

O�2x0

m� %b5
sinh %b

x

l

	 

and O�3x0

x

l
;

respectively, and o� by O�: For the range %b4o0 the procedure is similar as for the free oscillation case. We have just to

observe the analysis of Section 3.2.
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4.2. Rotational excitation

If the container is pitching with y0eiOt about the y-axis through the center of mass of the liquid the problem may be

solved by solving the Laplace equation (1) with the rigid wall conditions

@F
@x

¼ iOy0zeiOt at x ¼ 7
l

2
ð50Þ

and

@F
@z

¼ �iOy0xeiOt at z ¼ �
h

2
ð51Þ

as well as the previous equation at the free surface z ¼ 0: With the transformation

Fðx; z; tÞ ¼ eiOt½iOy0xz þCðx; zÞ� ð52Þ

we obtain

DC ¼ 0 and
@C
@x

¼ 0 at x ¼ 7
l

2
ð53Þ

and

@C
@z

¼ �2iOy0x at z ¼ �
h

2
: ð54Þ

The free liquid surface condition (4) yields

g
@C
@z

�
s
RL

@3C
@z@x2

� O2C ¼ iOy0
O2h

2
� g

� �
x at z ¼

h

2
in the range a�

1

2
o

x

l
p
1

2
: ð55Þ

The compatibility condition (6) is then given by

@%z
@t

¼
@C
@z

þ iOy0x

� �
eiOt at z ¼

h

2
in the range

1

2
o

x

l
pa�

1

2
: ð56Þ

The plate equation is given by

d4 %z
dx4

�
%b4

l4
%z ¼ �

iORL

EI
Cjz¼h=2 þ

O2RLy0h

2EI
x ð57Þ

and has to be solved with the boundary conditions. The procedure is similar as that performed above and is omitted

here.

5. Numerical evaluations and conclusions

Some of the above analytical results have been evaluated numerically and are presented in graphical form. First of all,

it should be mentioned that the magnitude of N1 and N2; i.e., the number of points at which the mixed surface

conditions are satisfied, varies according to the magnitude of the beam, that partly covers the free liquid surface. For

a ¼ 0:2; i.e., a length of the beam of 0:2l and thus covering one fifth of the liquid surface, N1 and N2 were chosen to be

N1 ¼ 3 and N2 ¼ 24: They were sufficiently large to yield good approximate results for the lower natural frequencies. If

the beam covers half of the liquid surface, i.e., if a ¼ 0:5; the numerical procedure employed N1 ¼ 20 and N2 ¼ 25 and

presented satisfactory results, while for a further increase of the beam to a ¼ 0:8; covering an amount of eighty percent

of the free liquid surface area a further increase of the number of points used on the beam was N1 ¼ 40; while the small

free liquid surface area required only N2 ¼ 13; in order to yield acceptable results for the natural frequencies as well as

for the coupled frequencies of the liquid–structure system. The magnitude of N1 and N2 was chosen, such that the

results of a further increase did not considerably change them.

In Fig. 2 we represent for a Bond number Bo ¼ RLgl2=s ¼ 1:3438	 105; a mass density ratio m� ¼ m=RLl ¼ 0:4 and a

gravity parameter of g� ¼ gml3=EI ¼ 1:7938	 10�3 the first natural frequency for a ¼ 0; 0:2; 0:5 and 0.8. The liquid

was chosen to be water with the density RL ¼ 103 kg=m3 and the beam of steel exhibited Young’s modulus of elasti-

city E ¼ 2:1	 1011 N=m2; while the density is RC ¼ 8	 103 kg=m3: The surface tension of water is given by

s ¼ 7:3	 10�2 N=m: The thickness of the beam d ¼ 5 cm is for this figure rather large and presents to the system a

nearly rigid beam structure. The natural liquid frequency o=
ffiffiffiffiffiffiffi
g=l

p
is presented as a function of the liquid height ratio

h=l ð0ph=lp1). The dashed line shows the natural liquid frequency for a ¼ 0; i.e., for a free liquid surface not
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obstructed by a beam. The natural frequency increases with increasing liquid height ratio h=l and reaches soon its limit

magnitude

onLffiffiffiffiffiffiffi
g=l

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1þ

n2p2

Bo

� �
tanh np

h

l

� �s

for n ¼ 1: For higher modes n > 1 the asymptotic value is practically reached for much smaller h=l-values. The

fundamental ðn ¼ 1Þ natural frequency for an obstructed liquid in a rectangular container is shown for a ¼ 0:2; 0.5 and

0.8 and exhibits with increased covering of the liquid surface increased natural frequencies. The here presented results of

a nearly rigid beam structure agrees with the results of Bauer and Eidel (2000) obtained previously. The larger the area

of obstruction, the less influence is noticed from the liquid height ratio h=l (see the case a ¼ 0:8). Only for small h=l the

natural frequencies decrease rapidly.

In Figs. 3a–c we represent the coupled frequencies as a function of the thickness d of the beam. In addition

we indicate the uncoupled frequencies ðn ¼ 1; 2; 3Þ for the liquid with a rigid beam and the uncoupled frequencies

ðn ¼ 1; 2; 3Þ for the beam without any interaction with the liquid, i.e., RL ¼ 0: The uncoupled natural frequencies,

presented as dash–dotted lines (-
-
) are obtained for a clamped–free beam case, for which l1 ¼ 1:8751;
l2 ¼ 4:6941; l3 ¼ 7:8548: With

onB ¼
l2n
a2l2

ffiffiffiffiffiffi
EI

m

s
¼

l2nd

a3=2l3=2

ffiffiffiffiffiffiffiffiffiffiffi
E

12RC

s

we notice that the structural frequency is proportional to the thickness d of the beam and indirectly proportional to the

3/2-power of the beam length (a�3=2 ¼ 11:19; 2:83; 1:4 for a ¼ 0:2; 0:5; 0:8; respectively). For the numerical evaluation

the length l of the container was chosen to be one meter ðl ¼ 1 mÞ: Fig. 3a represents the coupled frequencies for a short

beam of a ¼ 0:2: The dashed lines represent the natural frequencies for the liquid without a rigid structural cover. At

d ¼ 0 the frequency is only that of the liquid ða ¼ 0Þ at the height ratio h=l ¼ 1: It is indicated by the mark 3: The
natural frequencies with an elastic liquid cover increase with increasing beam thickness d and approach for large
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d-values the case of the rigid beam structure, i.e., the magnitude for a ¼ 0:2 at h=l ¼ 1 of Fig. 2. It is represented by

#-signs. We notice that for a short beam ða ¼ 0:2Þ the elasticity of the structure reduces the natural frequencies in a

range, which increases with the increase of the modal form. The higher the mode the larger the frequency range with the
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Fig. 3. (a) Coupled hydroelastic frequencies of partly covered free surface (elastic obstruction) for a ¼ 0:2; RL ¼ 1000 kg=m3;
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change of the thickness of the beam. It should, however, be mentioned that mainly the fundamental modes are of

engineering interest for dynamic studies. This is due to the fact that the fundamental sloshing and beam mode exhibit

the largest generalized masses interacting on each other. Since the coupled frequency o=
ffiffiffiffiffiffiffi
g=l

p
is smaller than RLl=RCd

the values of Fig. 3a have all been obtained with the above results of case 3.2, i.e., b4o0 ðb�4 > 0Þ: Fig. 3b shows the

coupled frequencies for a ¼ 0:5; i.e., the case, where half the liquid surface is covered by the beam. Here we notice a

stronger interaction of structure and liquid in the lower thickness range. The results in this case have also been obtained

by applying the solution of the case 3.2, i.e., b�4 > 0: In addition the frequency ranges become increasingly larger with

the change of the thickness of the beam. It may be noticed that the beam thickness of 5 mm ðd ¼ 5 mmÞ yields for short
beams ða ¼ 0:2; 0:5Þ natural frequencies, which are very close to those of the rigid beam structure ð#Þ: If eighty percent
of the free liquid surface is covered by the beam structure, the results are shown in Fig. 3c. Again we notice that the

coupled frequencies increase with increasing thickness d of the beam and approach, however, at a considerable larger

thickness of the beam (not presented here) finally the rigid beam case ð#Þ: Since the liquid frequency for a rigid

obstruction increases considerably with increasing a; i.e., increasing beam length, the change of the coupled frequency

exhibits a large magnitude as the thickness of the beam increases. We notice that the coupled liquid frequencies are

always located between the liquid frequency without obstruction ða ¼ 0Þ and that of the liquid frequency with a rigid

partial surface cover. The coupled liquid frequencies are always smaller than those of the liquid in a container with rigid

obstructions. It may be mentioned that the result of the third coupled frequency ðn ¼ 3Þ in Fig. 3c is obtained by

applying both cases 3.1 and 3.2 as indicated in the figure. With decreasing thickness d the application of the case 3.1

shall require higher coupled frequencies (according to o=
ffiffiffiffiffiffiffi
g=l

p
> RLl=RCd). The coupled structure-frequencies have not

been presented, since their frequency ranges are of larger magnitude and outside the range of this presentations. The

fluctuating magnitude of the natural frequency in the lower thickness range is due to the interaction of the elastic

structure and exhibits with the increase of the beam length larger frequency changes (see Figs. 3a–c).

6. Conclusions

The above results lead us to the following conclusions:

(i) the covering of a part of the free liquid surface increases the natural frequencies of the liquid;

(ii) if the surface obstruction is rigid the natural frequencies of the liquid increase with increasing cover area;

(iii) if the surface cover exhibits elasticity the coupled liquid–structure frequencies show in comparison with the rigid

cover decreased magnitude, the decrease of which becomes larger for increasing cover area ðaÞ; decreasing beam

thickness d and increasing mode.
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